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ANALYTICAL COMPARISON O F  EFFECTS O F  SOLD-FRICTION 

AND VISCOUS STRUCTURAL DAMPING ON PANEL FLUTTER 

Herbert J. Cunningham 
Langley Research Center 

SUMMARY 

A Galerkin modal analysis is presented that accounts for the effects of both solid- 
friction and viscous structural damping on panel flutter, based on unsteady aerodynamic 
forces from supersonic potential flow. The eigensolutions are made by complex eigen- 
value computer routines. 

Markedly different effects on the flutter boundary of the two types of structural 
damping are obtained. 
viscous'T damping for  solid-friction damping. 

This result establishes that there is not, in general, an "equivalent 

For the limiting case of the static-aerodynamic approximation, a substantially dif- 
ferent flutter dynamic pressure is obtained for  solid friction identically zero compared 
with solid friction approaching zero as a limit. 
approximation eliminates that difference. 

Use  of the quasi-static aerodynamic 

INTRODUCTION 

Two representations of structural damping have been used in published panel-flutter 
analyses. 
"hysteretic" in some of the literature and is accounted f o r  within a complex stiffness; 
and (2) the viscous type, that for harmonic motion is also characterized by a hysteresis 
loop in stress-strain and load-deflection plots. 

The two types o r  representations are:  (1) solid friction that is termed 

Neumark in reference 1 has provided a thorough and careful analysis of the basic 
characteristics of viscous and solid-friction (hysteretic) damping for  single-degree-of - 
freedom systems in free and forced oscillation; his findings apply as well to multiple- 
degree-of -freedom systems oscillating in a single simple harmonic motion. 
earliest  application of viscous-type structural damping to panel-flutter analysis appears 
in reference 2. 
continuous spectrum of traveling-wave modes, and some ranges of parameters  were 
found for  which added damping was destabilizing. 

Perhaps the 

The model analyzed was an infinite streamwise a r ray  of panels with a 

Reference 3 included an early application to panel-flutter analysis of the solid- 
friction type of structural damping used in wing-flutter analysis in reference 4. Added 



damping was found to be stabilizing in some parameter areas but destabilizing in others. 
An analysis is given in reference 5 of plane panels subjected to in-plane loading, linear 
piston-theory aerodynamics, and with solid-friction (hysteresis) damping both in bending 
and in longitudinal compression. The destabilizing effect of structural damping for  some 
ranges of parameters was found also fo r  this case. Reference 5 is notable for  its com- 
prehensive list of references (69). 

The extensive investigation of reference 6 included some consideration of viscous- 
type structural damping and found that it had a moderate destabilizing effect for  some 
parameters,  especially in the presence of low aerodynamic damping that accompanies low 
air density. A careful study is given in reference 7 of the effects of both viscous and 
hysteretic (solid-friction) damping on the flutter of a rectangular membrane. 
found that an increase of either or both types of damping is destabilizing, and that, for  the 
same value of structural damping coefficient, viscous damping is more destabilizing than 
solid-f riction (hysteretic) damping. 

It was 

The purpose of the present report is to present two methods of solution for routine 
calculation of panel-flutter characteristics as affected by the two types of damping in the 
presence of the complete unsteady aerodynamic forces and to show the substantially con- 
trasting effects of the two dampings. 
in reference 8 for  unyawed panels. A yawed panel is analyzed herein to show the effects 
from the two dampings. 
potential-flow theory are employed. The static and quasi-static aerodynamic approxima- 
tions are also used f o r  comparison purposes. The equations for  the generalized aero- 
dynamic forces are given in an appendix. 

The present work is an outgrowth from that reported 

In general, the complete unsteady aerodynamic forces  from 

SYMBOLS 

D where v is Poisson's ratio and Et3 
igL3r flexural stiffness of panel, 

E is Young's modulus 

modal-independent coefficient of solid-f riction (sf) structural damping g sf 
(es. (12c)) 

coefficients of solid-friction (sf) structural damping for  modes i and j ,  gi, sf?gj , sf 
respectively 

gj,sf 
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before being specialized to. mode j Esf gj,sf 

gi,vygj,vygB,v coefficients of viscous (v) structural damping for  modes i, j, and By 
respectively, where B denotes any base o r  reference mode 

G S  

hj = hj(Z,y) 

viscous structural damping constant (eq. (1)) 

mode-shape deflection for  mode j 

mA 

M 

Mi 

MO 

PA 

AP 

AP j 

mode-j component in deflection z (eq. (5)) 

unit of imaginaries, \T--i- 

reduced frequency based on reference length f, oQ/V 

nondimensional eigenvalue quantity for  fundamental panel mode (see eq. (19)) 

panel length at zero yaw 

mass  of panel per unit surface a rea  

Mach number of undisturbed stream 

generalized mass for mode i (eq. (12)) 

value of Mi for hi = 1.0; for uniform panels, Mo = mAQw 

number of half-waves lengthwise and widthwise, respectively, in panel 

j 
modes h 

perturbation pressure difference on panel, positive with z 

complex amplitude of Ap for mode j (see eq. ( 8 ) )  

time-varying generalized coordinate of motion for  mode j and its complex 

j 
amplitude, respectively, q. (~)  = eiwTq 

J 
- 

generalized aerodynamic-force elements, Qij = 

3 



S 

t 

V 

W 

%f 

surface area of panel, region of integration 

panel thickness 

speed of undisturbed airstream 

panel width at zero yaw 

lengthwise and widthwise coordinates, based on L and w, respectively, 
fixed to the panel as it yaws 

Z z-coordinates of deflected panel surface 

P = @T 
h dynamic-pre ssure  parameter , pV2 Q3/pD 

A angle of yaw of panel, deg 

mALw Mo mA 
ratio of panel mass to air mass, - - - = - 

pP2w pP2w P l  
- I.1 

P density of undisturbed stream 

7 time 

0 circular frequency of motion 

o. w.,w natural frequencies of panel modes i and j and of a chosen base o r  
1’ 1 B 

reference mode, respectively 

o* 

flexibility and stiffness eigenvalues, respectively (eqs. (14) and (15)) af 3% 
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ANALYSIS 

Statement of the Problem 

Figure 1 shows the yawed panel and its coordinate system. A minor difference 
from the analysis in reference 8 is that a right-hand coordinate system is used, so that 
here the z-axis is positive up. Correspondingly, deflections, downwashes, slopes, and 
forces have positive senses upward, but no signs in any of the equations need to be 
changed . 

The usual assumptions are made of linear force-deflection relations, flow over only 
the upper surface, and no aerodynamic effects induced between top and bottom panel sur-  
faces. No aerodynamic perturbation effects on the bottom surface of the panel are 
considered. 

The governing differential equation of motion is that for  a uniform isotropic panel 
with no in-plane loading. Two types of structural damping a re  accounted for: 
solid-friction mechanical hysteresis type, and (2) the viscous-structural type. 
tion of equilibrium of forces is given as 

(1) the 
The equa- 

DV4z (1 + igsf) + mA2 a% + Gs- az - Ap(z ,y ,~)  = 0 
a 7  a 7  

where the biharmonic operator is 

and where D is the panel flexural stiffness, mA is the panel mass  per unit surface 
area, z is the deflection, 7 is time, gd is a structural damping coefficient of the 
solid-friction (sf) type, Gs 
introduced in reference 6, and Ap is the net perturbation pressure (positive with z) 
arising from the deflection and motion of the panel. 

represents uniformly distributed panel viscous damping as 

b As explained in reference 6 the viscous damping constant Gs is expressed for 
any mode i as 

where wi is the natural frequency of mode i and g. is a structural damping coef- 
ficient of the viscous (v) type. Furthermore, for  Gs constant and independent of fre- 
quency, equation (3) implies that for  any two modes i and j 

1,v 
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where subscript B denotes any chosen base or  reference mode. 

Direct solution of equation (1) is not feasible for  the type of panel deflections and 
Therefore, the panel deflection at the flutter condition 

For simple harmonic motion the time and space variations are sepa- 

aerodynamic forces considered. 
is considered to be sufficiently well approximated by a linear combination of selected 
deflection modes. 
rated in the usual way 

where w is the circular frequency of motion, the shape distribution Z(Z,V) can be 
complex, and i = fl is the unit of imaginaries, not to be confused with the modal 
index i. This leads to 

where q is the complex amplitude of the generalized coordinate of motion. When the 
deflection mode shapes h. are known that satisfy both the appropriate boundary condi- 

3 
tions and the differential equation (l), with aerodynamic and damping te rms  omitted, then 

j 

2 i w T  = m w .  h.e 
a2 (eiW7hj) 

-m* a? A 3  3 
DV4h.eiwT = 

J 

where on the right-hand side w takes on i ts  eigenvalue wj,  the normal-mode frequency 

associated with h Thus, the elastic-restoring te rm DV4h. is representable in te rms  
of w 
lead to the result 

j '  J 4 

Substitution of equation (5) into equation (1) and use of equations (3), (4), and (6) j '  

6 



where Esf has taken on its modal values gj,sf. The frequency w and the coordinates 
4. are unknown, and the perturbation pressure remains to be specified. 3 

In keeping with the modal analysis the pressure Ap is also expressed in te rms  of 
a modal series; that is, 

where each Apj(X,f) is a complex distribution function. 

The Galerkin method is chosen to form the flutter-stability equations. Accordingly, 
the terms of equation (7) a r e  multiplied by a mode shape hi(Z,f) and the resulting prod- 
ucts a r e  integrated over the a rea  of the panel. 
cessively 1, 2, 3,. . . for all employed, the result is a system of equations expressing 
equilibrium of energy for  a condition of minimum total energy of the panel. 
that a r e  orthogonal with respect to the mass distribution 

When the modal index i is made suc- 

hi 
For modes 

mA, 

11 mAhihj dZ dy = 0 
S 

each of the set of equilibrium equations is of the form 

From the last term of equation (10) 

Qw 11 Apjhi dj; dy = Q.. 
1.l 

S 

(9) 

which is the generalized aerodynamic-force (element) term. 
obtaining Q.. a r e  described in the appendix. 

The procedures for 

11 
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Solution of the Flutter Determinant 

For the numerical solutions herein, it has been assumed that the individual modes 
used in the analysis are orthogonal with respect to the mass  distribution (no inertial 
coupling between modes), and that there is also no significant stiffness coupling between 
modes. Provision is made for investigating two types of structural damping: (1) solid- 
friction, structural-hysteresis damping characterized by a coefficient gj,sf7 and 
(2) viscous-structural damping characterized by a coefficient g. 
and (11) the set of equations that express the dynamic equilibrium of motion is given as 

From equations (10) 3 7v’ 

(i = l,2,. . .) (12a) 
WB (1 + igiJsf) - u2 (1 - i qiMi - Qij = 0 

where 

Mi = Qw J1 1’ mAh: d2 dji 
0 0  

and where ~ i , s f ,  as introduced in reference 8, is considered as made up of two parts; 
that is, 

where giJsf remains the assigned or  measured value for  mode i and gsf is a modal- 
independent mathematical convenience that is an aid in interpreting eigensolutions. 

Preliminary to a solution of equations (12a), they a r e  each divided by Mi and a 
substitution for Q.. is made. The result is 

13 

4 

where 

4 

Two types of solutions of the flutter equations, one adapted to each of the two types of 
structural damping, are described in the following discussion. 

8 I 
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The flexibility solution.- A type of solution like that in reference 8, that is suited to _ _ _ _ _ ~  
the presence of solid-friction structural damping only, is termed here the "flexibility 
solution7' because the dominant eigenvalue is that of the most flexible mode - the one 
with the lowest of the frequencies ui. 
asymptotic expression for  1 + igiYsf 

To obtain this solution based on equations (12) an 

1 + igiJsf = 1 + igiJsf + igsf - (13) 

is substituted, g is set equal to zero, and equation (12d) is multiplied by B,v 

-wBf[u:u2(l + igiYdfl. Thus, 

where wB is a chosen base o r  reference frequency, the flexibility eigenvalue af is 

2 1 -  PQ w - PQ 

and k = wQ/V is the reduced frequency. Note that giYsf can be different for  each 
mode i. 

The stiffness solution.- A type of solution that is suited to analysis of the effects of 

friction damping, is termed here the "stiffness solution" because the dominant eigenvalue 
is that af the stiffest mode - the one with the highest of the frequencies 
this solution the modal-independent coefficient gsf -of equation (13) is dropped and equa- 
tion (12d) is divided by wB2. Thus, 

b viscous-structural damping, and can simultaneously account for  the presence of solid- 

ui. To obtain 

(i = 1,2;. . .) (15a) 

9 



i 

obtained where the stiffness eigenvalue as is 

As in the flexibility solution gi,sf can be different for  each mode i. The eigenvalues 
appear only on the principal diagonal and a r e  readily calculated by an eigenvalue computer 
subroutine. 

Solution techniques.- With aerodynamic forces  derived from unsteady potential flow, 
flutter boundaries cannot be calculated directly or  explicitly. A search technique must 
be employed, and this is illustrated fo r  a case with the following panel and flow parameters: 
simply supported edges, Q/w = m, A = loo, two assumed natural beam modes in both 
length and width directions, gi,sf = 0, M = 3.0, and k = 0.25. Equations (14) for  the 
flexibility solution and equations (15) for  the stiffness solution a r e  solved by using standard 
complex-eigenvalue computer routines, since the eigenvalues af and 52, appear only 
on the main diagonal. 

For an initial assumption of l /p  = 0 the eigenvalues a r e  those for  the assumed 
modes in a vacuum. 
and l/p = 0) in all the par ts  of figure 2(a) from the flexibility solution and of 2(b) from 
the stiffness solution. The labeled values of p,q a r e  the number of half-waves in each 
assumed mode lengthwise (p), and widthwise (9). A s  1/p is monotonically increased 

('' gB,v) the traces that a r e  plotted a re  w* and gsf 
ness parameter and gsf (or  gB,v) against l / p  on the right. The frequency ratio 
w/wB and gsf (Or gB,v) a re  obtained from the eigenvalues. The dimensionless fre- 
quency parameter w* (and wB* and w c )  a re  defined by 

The results are the points at the "foot'' of each curve (Le., at X = 0 

against X on the left, and stiff- 

(see appendix A of ref. 8) and w* is calculated by 

10 
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The stiffness parameter is 

For the stiffness solution, 1/11 is obtained from the assumed product ( l / p ) ( w / ~ ~ ) ~  
and the calculated w wB. The dynamic-pressure parameter is calculated according to 
equation (B2) of reference 8 

B I 

x = (q,1)4 1 1/P 

(w,Q/v)2 
where el,1 is a function of panel-edge support and Q/w, and for  simply supported 
edges it becomes 

to pass from negative 
B,v A sufficient increase of 1/11 causes gsf and g 

(indicating a stable motion) through zero (neutrally stable, o r  borderline flutter point) to 
positive values (unstable). The points with gsf = 0 in figure 2(a) and with g = 0 in 
figure 2(b) a r e  common in all respects, but they have been reached in two different planes. 
Figure 2(a) is in the plane g (The 
latter could have been in planes gi,sf equal to an a r ray  of constants - possibly a differ- 
ent constant for  each mode i - had the analyst so desired.) 

There is a solution difficulty to be overcome at the static aerodynamic limit, k = 0, 
of the unsteady aerodynamic theory. In the equilibrium equations the ratio (1/p)/k2 
appears. This ratio remains finite when both k and 1/11 approach zero. In order to 
use the same solution framework for  calculating a flutter value for  A, an arbitrary non- 
zero value is assigned to k in the.equilibrium equations while using the G.. for  k = 0. 

B,v 

= 0, whereas figure 2(b) is in the plane gi,sf = 0. 
B,v 

11 

FtESULTS AND DISCUSSION 

Introductory Remarks 

The effects of solid-friction and viscous structural damping are illustrated for the 
same panel characteristics studied above in the section "Solution Techniques," namely, 
simply supported edges, Q/w = G, A = loo, and two assumed modes in both length and 
width directions. Effects of solid friction alone a r e  obtained from the flexibility solution. 
Effects of viscous friction and of combinations of viscous and solid-friction damping are 

11 



from the stiffness solution. Comparisons are shown for k = 0 representing the static- 
aerodynamic approximation, for k = 0.01 representing the quasi-static aerodynamic 
approximation, and for k = 0.25 representing the use of the complete unsteady aero- 
dynamics. The majority of the studies are done with M = 3.0, as typical of the Mach 
number range where coupled-mode flutter is encountered, but one study is reported for  
M = 1.3 where "single-degree-of -freedom" flutter can be encountered. 

In the "Solution Techniques" section the search procedure for  finding flutter bound- 
a ry  points was described with plots of w* and gd (or gB,v) against A and of stiff- 
ness parameter and gsf (or gB,v) ag ainst 1/p. The same types of plots are used in 
presenting the results that follow. 1 

Comparison of Damping Effects Using the Static Aerodynamic Limit (k = 0) 

It was pointed out at the end of the "Solution Techniques" section that, to obtain 
results for  k = 0, the 8.. a r e  calculated for  k = 0, but in the equilibrium equations k 
is assigned a nonzero value. Although any value can be assigned, k = 0.01 was assigned 
in the present work. This choice necessarily affects the range of l /p that is selected 
during the search. 

4 

Solid-friction effects from a flexibility solution. - The parameter t races  a re  shown 
in figure 3(a). An initial choice of 1/p = 0 gives the natural-mode-in-a-vacuum points 
at the foot of each curve where the p,q values are labeled fo r  reference. As l /p  is 
gradually increased the parameter t races  move as indicated by the arrows. A small  
value of 1/p results in the four points indicated by the circles. The four circles fall 
at a constant l /p  on the plot of stiffness parameter against l/p; but on the plot of o* 
against X the four circles fall on a parabola, and X is a constant multiplied by ( w * ) ~ .  
For a higher chosen 1/p the four points indicated by the squares result and they fall 
on a lower parabola on the plot of w* against A. This l /p  was chosen because two 
frequencies have coalesced at an instability point with X = 331. (Two of the squares * 

coincide at the frequency coalescence of the p,q = 2 , l  and 2,2 modes.) A still higher 
value of 1/11 gives the diamond points. The triangle points result from a yet higher 
value of 1/11 that was  selected fo r  its closeness to the frequency coalescence of the 
p,q = 1, l  and 1,2 modes with X = 168. Note that the parabola through that coalescence- a 

point pair is tangent to the curve of o* against A. 

With static aerodynamics the only way a flutter instability can be reached is by a 0. 

frequency coalescence, and this occurs for  the present case with h = 168, which is the 
flutter value. 

Viscous-friction result f rom a stiffness solution.- The parameter t races  are shown 
in figure 3(b) and the natural-mode values of p,q a r e  labeled at the foot of each curve. 

- 
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A small chosen value of ( l / ~ ) ( w / w ~ ) ~  gives the parameter values indicated by the 
circles, and certain successively higher values give the squares, the diamonds, and the 
triangles. Note that each set of symbols falls on a vertical line on o* plotted against A, 
but the symbols f a l l  on a parabola on stiffness parameter plotted against 1/p. Compar- 
ison with the flexibility-solution results in figure 3(a) reveals the contrasting behavior of 
any set of points (such as the circles). 

> On the plot of w* against X the lower frequency pair of squares falls just barely 
above the flutter associated with frequency coalescence at X = 270 of the modes that 
originate at p,q = 1 , l  and 1,2, and this frequency coalescence occurs at a point of tan- 
gency with the vertical line X = 270. The diamond points fall at an intermediate value 
of A. At a higher X a pair of the triangle points falls very nearly at the frequency 
coalescence of the modes originating at p,q = 2,2 and 2 , l .  

c 

It is significant to observe the two different results for  k = 0. From the flexibility 
solution with g 
frequency coalescence at which A = 168. (See fig. 3(a).) From the stiffness solution 

gSf = 0 and with g variable including g - 0, frequency-coalescence with gi,sf = 
flutter occurs at a frequency coalescence with X = 270. This finding is discussed further 
subsequently. 

= 0 and with ( gi,sf + gsf) variable including - 0, flutter occurs at a 
B,v 

B,v B,v 

Viscous-plus-solid-friction result from stiffness solution.- In order to study com- 
bined effects of viscous and solid friction, especially for  small amouts of solid-friction 
damping, gi,sf was set equal to 0.01 (all modes). The results from a stiffness solution 
are shown in figure 3(c). At the crossing point g = 0, the same result is obtained 
(A = 168) as from the flexibility solution with g = 0 and gsf = 0.01 as shown in fig- 
ure 3(a). Small increments of gB above 0 a r e  strongly stabilizing. For g = 0.001, 
X = 176; and for  g = 0.01, X = 529. 

B,v 
B,v 

B,v 
B,v 

A separate solution f o r  gi,sf = 0.001 w a s  made in order  to approach more closely 
the limit gi,& - 0. The flutter X w a s  again 168, and increase of g 
strongly stabilizing than in the presence of gi,sf = 0.01. 

was even more 
B,v 

Although such solutions that are very close to gi,sf = 0 do not constitute a fo rma l  

limit value as gi,sf - 0 within the stiffness solution because of the smooth and regular 
behavior of all the forces acting. 

1 mathematical proof of the limiting value of A, it is strongly believed that X = 168 is the 

L 

Summary plot of effects of solid-friction and viscous damping.- Figure 4 represents 
a three-dimensional plot of X against both g The curve seg- 
ments in the three planes g B,v - - 0, gi,sf = 0, and gi,sf = 0.01 are from figures 3(a), 
3(b), and 3(c), respectively. The discontinuous result  for X for  gSf -L 0 compared 
with gsf 0 is shown. 

and (qSf + gsf). B,v 
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Comparison of Damping Effects Using Quasi-Static 

Aerodynamics (k = 0.01) 

A very low value of k (0.01) is used in order  to study the damping effects in the 
vicinity of the limit k - 0, where the quasi-static aerodynamic approximation is most 
valid. 

Solid-friction effects from a flexibility _ _  solution. - The parameter t races  are shown 
____I- . _  

Q in figure 5(a) and, being from the flexibility solution, are for  the condition (and in the 
plane) gg 
gsf scale is between d .02 ,  which is much less  than in figures 2 and 3. The points on 
the traces at certain successively higher 1/p values indicated by the circles, squares, 
diamonds, and triangles a re  at the same l /p  values as in figure 3(a). The trace or 
mode that reaches the flutter point is the one originating at p,q = 1,2, and for  gsf > 0 
the curves on all figure parts are a ser ies  of dots for  the purpose of identification. At 
the crossing point gsf = 0, X = 270. For gsf = 0.01, X drops sharply to 215 indi- 
cating the strong destabilizing effect of solid friction in this parameter range. (The 
other trace that reaches an instability at a higher X originates at p,q = 2,2, and for 
gsf > 0 it is identified by a row of x's on each figure part.) 

Viscous-friction result from stiffness solution.- The parameter t races  for giYsf = 0 
a r e  shown in figure 5(b). The range of g 
better the trace behavior. At the crossing point g = 0, X = 270. For a small or even 
substantial increase in g 

= 0. In order to display better the pertinent t race behavior, the range of the 

~ -- 
is restored to d . 4  in order to display 

B,v 
B,.V 

the increase in X is insignificantly small. 
BYV 

Viscous-plus-solid-friction -__ ____ result f rom a stiffness solution.- Values of giYsf for  
all indexes i a r e  set  equal to 0.01, the same as for  k = 0 described previously, and 
the results a r e  shown in figure 5(c). At the crossing point g = 0, X = 215 which is 
the same as fo r  gsf = 0.01 in figure 5(a), as it should be, since they a r e  a common point 
reached in two different intersecting solution surfaces. An increase of g 
is stabilizing: for g = 0.01, X = 236. 

BYV 

above 0 
B,v 

BYV 
Summary plot of effects of solid-friction and viscous damping.- Figure 6 represents 

- - --- 

a three-dimensional plot of X against both g B,v and (gi,sf + gsf). In comparison to 
figure 4 with k = 0, here the discontinuous behavior has disappeared and there is a steep 
negative slope with varying gi,sf + gSf) 
giYsf = 0, and giYsf = 0.01 a re  from figures 5(a), 5(b), and 5(c), respectively. 

I 

The curves in the three planes g = 0, ( B,v 

Although a formal mathematical proof is lacking, it is concluded that there is 
a discontinuous result  for X f rom the flexibility solution for  k - 0; namely, for 
giYsf + gsf = 0, X = 168 for  k 2 0, but X = 270 for k + 0. This conclusion is reached 
because of the smooth and regular behavior of the aerodynamic forces  in the vicinity of 

14 



k - 0 and from observation of how an instability (flutter) point is reached in the solution 
processes. 

Comparison of Damping Effects Using 

Complete Unsteady Aerodynamics 

A result of using the complete unsteady aerodynamic theory is shown in figures 2(a) 
and 2(b) for  k = 0.25. 
tion. The flutter point with X = 293 is at the crossing point 

small decrease of X to 286. An increase of g to  0.02 predicts a small increase 
of X to 302. 

1 This figure was used earlier to  illustrate the technique of solu- 

gsf = 0 in figure 2(a) and 
* at the crossing point g = 0 in figure 2(b). An increase of gsf to 0.02 predicts a 

B,v 
B,v 

At the common point, gsf = gB,v = 0, X = 293, 1/p = 0.0721, olQ/V = 0.1196, 
and.the product (l/p)(wlQ/V) = 0.00862. Figure 7 shows a flutter boundary in the 
plane l / p  plotted against stiffness parameter w,Q V as used in reference 3 and in 
subsequent publications. The solution points for k = 0.25 and 0.01 discussed previously 
are indicated. 
Mach number determines a hyperbola ( l /p)  (wlf/V) = Constant. The hyperbola of short 
dashes is fo r  aluminum at standard sea level and with M = 3, for  which (l/p)(wlf/V) 
= 0.00851. Increasing thickness is to the right toward the stable region. The intersec- 
tion of the hyperbola with the flutter boundary determines the thickness ratio required to 
prevent flutter. 

I 
A variable thickness of panel with a fixed panel material, altitude, and 

For panel and flow parameters that result in a flutter boundary characterized by a 
slow variation of X and of w wB with varying k and altitude, extrapolations and 
interpolations to obtain additional points on a flutter boundary can be obtained on the basis 
of assumed constant X and w wB. The associated proportionalities are 

/ 
/ 

9 f rom which 

t 

When an analyst has tr ied a value of k and obtained a point on a flutter boundary that 
does not fall on a desired hyperbola of panel material and altitude, he can estimate his 
next value of k from equation (22). 
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Comparison of Damping Effects a t  M = 1.3 

All of the results discussed previously are fo r  M = 3.0, as representative of a 
Mach number well above any transonic or low supersonic effects. In this higher range 
of M, panel flutter is characterized by strong coupling of the assumed deflection modes 
used in a modal analysis. In the low supersonic range, for  M less than about @, and 
fo r  panels with Q/w less  than about 2 to 4, a different type of flutter is predicted. The 
flutter motion is dominated by a single mode and is often termed "single-degree-of- 
freedom flutter," although the other modes are present in small proportions. 

Results calculated for  the same panel discussed previously, but with M = 1.3, are 

For all the lower part of that boundary 
presented in figure 8. As indicated by the key and the labels, the solid boundary on the 
right is the flutter boundary for  gB,v = gsf = 0. 
the flutter motion is predominantly the p,q = 2, l  mode. An increase of viscous damping 
alone to g = 0.01 has a significant stabilizing effect by shrinking the flutter region to 
within the boundary of short  dashes. An increase of solid-friction damping alone has  a 
comparatively greater  stabilizing effect by shrinking the flutter region to within the 
boundary of long and short dashes. The solid, nearly parabolic-shaped boundary to the 
left is an instability boundary characterized by strong modal coupling, and it is little 
affected by structural damping except close to the origin where k is very small. A 
sufficient increase of g and/or gsf shrinks the flutter region that is dominated by 
the single-degree-of -freedom (p,q = 2, l )  mode, until the coupled-mode instability bound- 
ary becomes the flutter boundary. 

B,v 

B,v 

Comments on Convergence With Respect to the 

Number of Modes in the Modal Analysis 

All  of the results of the present report were determined by using four modes in the 
Galerkin modal analysis - two modes lengthwise and two widthwise even though these 
results are not particularly well converged. The use of four modes in both directions 
gives a X roughly 30 percent higher, and it was established that this four-by-four-mode 
result is well converged, at least for A = 0' and 90'. The effects of solid-friction and 
viscous structural damping a r e  the primary subject of this report, and these effects a r e  
the same from the two-by-two-mode results and from the four-by-four-mode results. 
The 16-mode results are so much more complicated to present and describe that the 
decision was  made to present the 4-mode results. 

Review of Results 

The two types of structural damping, solid friction and viscous, a r e  shown to have 
mostly contrasting effects on panel-flutter boundaries for the panel and flow parameters 
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investigated. Solid-f riction damping is strongly to moderately destabilizing, whereas vis- 
cous damping is stabilizing or  ineffective. 
panels contrasts with the findings of Ellen in reference 7 for  two-dimensional membranes 
based on quasi-static aerodynamics. Figure l(b) of reference 7 shows a marked destabi- 
lizing effect of both viscous and solid-friction (i.e., hysteretic) damping. 
of the two types of structural damping a re  found to be so different herein, there cannot be 
an "equivalent viscous damping" for  solid-friction structural damping in panel flutter. 

This stabilizing effect of viscous damping on 

Since the effects 

A 

Flutter solutions were obtained for  a particular yawed panel for  M = 3.0. With use 
of the static-aerodynamic approximation (k = 0), the stiffness solution gives a discontin- 
uous result for X in the vicinity of gi,sf z 0 in the plane g = 0. For gi,sf = 0, 
X = 270; but for gi,sf - 0, X = 168. Another discontinuous result is obtained from the 
flexibility solution in the vicinity k = 0 for gsf = gB,v = 0. For k = 0 (i.e., static 
aerodynamics), X = 168; but for k - 0 (Le., quasi-static aerodynamics), X = 270. 

The complete unsteady aerodynamic forces w e r e  used for  k = 0.25 in order to 

4 

B,v 

calculate a point on the flutter boundary that corresponds to aluminum panels at sea level. 
All of the flutter boundary results for  M = 3 are  characterized by a flutter motion of 
strongly coupled assumed deflection modes. 

The low Mach number region was  studied for the same panel with M = 1.3. Here, 
the flutter boundary is characterized for low structural damping by a flutter motion that 
is dominated by just one of the assumed modes ("single-degree-of -freedom flutter" 
herein termed ''DOF''). 
constant X. Addition of both solid-f riction and viscous damping is strongly stabilizing, 
and a sufficient increase of either type of damping rapidly shrinks the single DOF flutter 
region until a coupled-mode flutter boundary is encountered. This latter boundary is 
like the coupled-mode boundary f o r  M = 3 in that X varies  slowly with l /p,  and the 
boundary is little affected by further increases in damping, except at very low l/p.  

This single DOF boundary is not at all characterized by a nearly 

CONCLUSIONS 

An equilibrium equation has been given that accounts for both solid-friction and 
viscous structural damping in panel-flutter analysis. A solution technique has been 
developed for  routinely calculating the effects of both types separately and in combination. 
The solution technique is usable with aerodynamic forces  f rom general unsteady potential 
flow. A Galerkin modal analysis of a rectangular yawed panel at two Mach numbers M 
of 3.0 and 1.3 leads to the following conclusions: 

I 

4 

1. The additions of solid-friction and viscous structural damping to the panel have 
opposing effects on the coupled-mode flutter boundary: solid-friction damping is mostly 
destabilizing, but viscous damping is stabilizing or ineffective in  every case investigated. 
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The relative effects of structural damping are the greatest  at the lowest mass  ratios 
(air mass  to panel mass) and become smaller as mass  ratio increases. 

2. Since the two types of damping result in opposing effects at M = 3.0, there can- 
not be, in general, an "equivalent viscous" damping to  solid-friction damping. 

3. Two discontinuous results for  flutter dynamic-pressure parameter are obtained 
at M = 3.0 in the vicinity of reduced frequency k = 0 and in the vicinity of solid- 
friction damping gsf = o. - 

! 

ii 
4. At a low supersonic Mach number, M = 1.3, the flutter boundary is a "single- 

degree-of-freedom" flutter boundary for  the important range of mass  ratios and for  low 
structural damping. 
of-freedom flutter. A sufficient increase of structural damping shrinks the single- 
degree-of -freedom flutter region until a coupled-mode flutter boundary is encountered, 
for  which the structural damping effects are similar to those for  M = 3.0. 

Both types of damping are strongly stabilizing for the single-degree- 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
August 2, 1976 
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APPENDIX 

GENERALIZED AERODYNAMIC-FORCE ELEMENTS Qij 

The generalized aerodynamic-force element is, as given by equation ( l l ) ,  

Q.. Pw Jl Apjhi dZ dy 4 
S 

The lifting-pressure difference Ap is that from the modal series of equation (8) 
j 

The lifting pressure is obtained from the perturbation velocity potential q ( X , y , ~ )  by 

A P ( ~ , ~ , T )  = -p - dq(  z,y, 7) 

dT 

By using a modal series for q that is consistent with the ser ies  for Ap and for 
deflection z, 

and 

j 
which gives for  the individual Ap 
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APPENDIX 

where 

wherein: 

s* 

5 ,rl 

R 

- 
w 

region of integration, the panel area within the forward-facing Mach charac- 
terist ic cone with apex at x,y 

streamwise and cross-stream dimensional coordinates, respectively, with 
same origin as Z,y: 

x = QZ cos A + fl sin A 

y = cos A - QZ sin A 

dummy variables for x,y, respectively 

M2w 
=p2v 

and the downwash amplitude is 

Substitution of equation (A6) into equation (Al )  gives 

a q j  Q acPj 
Qij = * hi(cos A + - sin A ay + i fi v cPj ) d(Q%) d(wy) 

Q ax w 
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APPENDIX 

Z=O 

Integration by par ts  of the t e rms  that involve sin A and cos  A yields 

1 

Where .panel edges can displace vertically, the te rms  h. q 
be significant; but for  the usual situation of hi = 0 at the edges, Qij is determined by 
the remaining te rms  

evaluated at those edges can 
1 j  

1 1  

o o  
Qij = pVw 1 1 (cos A 

1 1  

0 0  
= pVw 1 1 (w</V)qj dZd9 

where the velocity potential cp 
jugate of the downwash ratio wi/V. (Compare with w 
as given in equation (A10) are used in the present report. 

is that of equation (A7) and wc/V is the complex con- 
j 

of eq. (A7).) The elements Q.. 
j 11 
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Figure 1.-  Yawed panel and i t s  coordinate system. 
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Figure 2.-  Parameter traces from flutter solution for panel with Q/w = fi, 
A = loo, M = 3.0, and k = 0.25. 
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Figure 3.- Parameter traces from flutter solution for panel with Q/w = 40.3,  
A = loo, M = 3.0, and k = 0. 
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Figure 4.- Dynamic-pressure parameter h against gsf with g = 0, 

with gsf = 0 for  panel with Q/w = 6, A = loo, 
B,v 

B,v 
and against g 
M = 3.0, and k = 0. 
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Figure 6. - Dynamic-pressure parameter h against ( gi,sf + gsf) with g = 0, B, v 
and against g 

M = 3.0, and k = 0.01. 

with gi,sf = 0 and 0.01 fo r  panel with Q/w = 6, A = loo, 
B,v 
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